首页> 外文OA文献 >T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
【2h】

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

机译:T-CNN:具有用于物体检测的卷积神经网络的小管   来自视频

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The state-of-the-art performance for object detection has been significantlyimproved over the past two years. Besides the introduction of powerful deepneural networks such as GoogleNet and VGG, novel object detection frameworkssuch as R-CNN and its successors, Fast R-CNN and Faster R-CNN, play anessential role in improving the state-of-the-art. Despite their effectivenesson still images, those frameworks are not specifically designed for objectdetection from videos. Temporal and contextual information of videos are notfully investigated and utilized. In this work, we propose a deep learningframework that incorporates temporal and contextual information from tubeletsobtained in videos, which dramatically improves the baseline performance ofexisting still-image detection frameworks when they are applied to videos. Itis called T-CNN, i.e. tubelets with convolutional neueral networks. Theproposed framework won the recently introduced object-detection-from-video(VID) task with provided data in the ImageNet Large-Scale Visual RecognitionChallenge 2015 (ILSVRC2015).
机译:在过去两年中,物体检测的最新性能得到了显着改善。除了引入强大的深度神经网络(例如GoogleNet和VGG)外,新颖的对象检测框架(例如R-CNN及其后继者)Fast R-CNN和Faster R-CNN在改善最新技术方面也起着重要作用。尽管它们对静止图像有效,但这些框架并不是专门为视频中的对象检测而设计的。视频的时间和上下文信息得到了充分的调查和利用。在这项工作中,我们提出了一个深度学习框架,该框架结合了从视频中获取的细管中的时间和上下文信息,当将其应用于视频时,可以显着提高现有静态图像检测框架的基线性能。它被称为T-CNN,即具有卷积神经网络的小管。拟议的框架在ImageNet大规模视觉识别挑战赛2015(ILSVRC2015)中赢得了最近引入的视频对象检测(VID)任务,并提供了数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号